構造部門

さかきばら けい た 神原啓太

生年月日 1982年3月愛知県生まれ 最終学歴

2012年

2008年名古屋大学大学院 環境学研究科

2008年㈱日建設計入社 業務経歴

> 構造設計部門構造設計室 現在、エンジニアリング 部門構造設計グループ構 造設計部

●担当した主なプロジェクト 2009年 飛騨市立古川小学校 2010年 九電工アカデミ 2011年 大妻学院本館

住友不動産/

千代田ファーストウィング

専修大学国際交流会館 2013年 2014年 トスラブ館山ルアーナ ソラリア西鉄ホテル京都 2015年 2016年 鳥取県立中央病院

■青年技術者のことば

兵庫県南部地震、東北地方太平洋 沖地震などの大地震が頻発し、建 物の構造安全性に対する一般の 方々からの興味・要求が大きく なっている。一方で、我々構造設 計者は建物の構造安全性について 正確に伝え、理解してもらう努力 をまだ十分にできていないと感じ ている。構造設計を通して安全で 魅力的な都市空間作りに携わって いきたいことはもちろんだが、設 計者としての自分の思いを、難 しい専門用語を使うだけでなく、 ユーザーの立場にたって一般的な 言葉で話せる構造設計者でありた l1.

NSmosは、専門知識を持たない一 般の方々に対して自分の生活し ている建築物の耐震性能を、実感 を持って理解していただき、建物 の耐震性能を高めることの重要性 を理解していただくコミュニケー ションツールになり得ると思い開 発を進めてきた。

構造設計者として身に着けてきた 知識、経験、技術力を用いて、構 造設計への理解を広めることがで きれば、我々の職能の地位向上に もつながると考えている。

■すいせん者

田代靖彦 ㈱日建設計

エンジニアリング部門

構造設計グループ 理事・副代表

崖から迫り出す保養所 トスラブ館山ルアーナ

1. 建築計画

海から2km程度離れた高台の自然豊か な傾斜地に建つ保養所。建物の高さ を抑え、計画地の豊かな自然に可能 な限り手を付けないことをコンセプ トとした。敷地に合わせ半円状の長 大な形状(長辺長さ約160m)とする ことで、客室からの海側の眺望を最 大限確保し、山側には周囲から隔離 された中庭空間を合わせ持つ建物と なった。

2. 構造計画

鉄筋コンクリート造を主体構造とし、 車寄せ庇やレストラン部分には一部 鋼管柱を用いた。屋根は耐火構造の 金属屋根とした。

400mm×700mmの柱を円周方向に約5.0m ピッチに配置し、梁は基準サイズを 幅400mm×せい700mmとした。 1 階は耐 震壁をバランスよく設け十分な壁量 を確保し、2階は非剛床のラーメン 構造として計画した。各方向、各スパ ンともにほぼ均一で、かつ十分高い 層剛性を持たせることで水平力の移 動が少なくなるように配慮している。

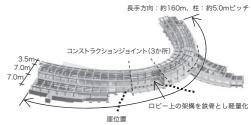
3. 崖地に対する構造計画

設計のプロセスの中で敷地の特性の 一つである崖地を最大限生かせるよ う、建物の一部が崖から迫り出す形 状を提案した。これにより崖から迫 り出した開放的なロビー空間が生ま れたが、1階口ビーから連続する外 部テラスが崖地から最大6m以上跳ね 出すことになり、「崖地に対する十分 な安全性をいかに確保するか」が構 造の最大のテーマとなった。


基礎は深層混合地盤改良+独立フー チング基礎を基本としているが、崖 地に接近する部分については、崖周 辺の地盤を乱さないことを考慮し基 礎底を深くして改良を行わない計画

1階ロビーからの眺望

とした。また、架構の重心位置をで きるだけ崖から離すために当該架構 のみ布基礎とした。重心位置はX3通 りから約1.0m程度崖から離れた位置 となっている。さらに、X3通りから崖 までの距離は約3.6m~5.2mであるが、 一律3.0mの位置に基礎梁の支点位置 を設定し安全側の評価を行っている。 これらに加え万が一崖が崩れ、片持 ち基礎梁の支点が無くなった場合で も、直交する長辺方向基礎梁を剛強 にすることで、床を支えることがで きるように計画した。


以上により、敷地の特性を最大限生 かしつつ、十分な安全性を確保した 建物とすることができた。

跳ね出し架構の軸組図

建物外観

構造モデル図

日建設計版構造ヘルスモニタリングシステム(NSmos)の開発

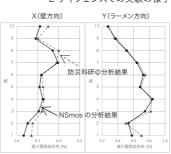
1. システムの特徴

建物内に地震計(加速度センサー) を設置し、得られたデータから建物 の揺れや被災度を即時に把握できる システムを開発した。地震発生後す ぐに被災度判定レポートを提供でき、 通常時はモニターにて建物の揺れを 監視できる。

被災度判定に際し、構造設計者が建 物ごとの構造特性に応じた判定値を 設定することで、より正確な判定を 提供できることが最大の特徴である。 2014年3月から実用化を開始し、高 層建物、免震建物など複数棟に設置 されている。

2. 開発の経緯

構造設計は、想定した仮想地震の揺 れや強さをもとに行うが、実際の地 震発生時に設計者の想定通りに建物 が揺れたのか、検証を行うことはほ とんどできていない。


2003年に完成した日建設計東京ビル には建物内外各所に地震計が設置さ れており、東北地方太平洋沖地震の 際にも設計時に想定した通りに建物 が揺れたことを確認できている*。

このような分析や被災度の簡易判定 が地震後瞬時に提示できれば、避難 指示や建物の継続使用の判断を迅 速・的確に行えるようになると考え、 開発を進めてきた。

※榊原他;2011年東北地方太平洋沖地震を受けた 日建設計東京ビルの地震記録(その1)~(その 3). 日本建築学会学術講演梗概集, 2012

E-ディフェンスでの実験の様子

最大層間変形角分布 (基礎固定、JMA神戸波25%)

3. 実建物による精度確認

2015年12月に防災科研で実施された、 E-ディフェンスでの10階建てRC造建 物の震動実験にNSmosを搭載し、被災 度判定結果および分析方法が高い精 度であることが確認できた。

現在も、新機能を追加するなど開発

判定レポートの例 (簡易レポート)